
Python scripts to help users explore

Baltic+ SEAL products

By Emma Chalençon (UCC) & Marcello Passaro (TUM)

Baltic+ SEAL Project

See www.balticseal.eu for more information

1. Plotting Baltic+ SEAL products

1.1 Along-track products

1.2 Gridded products

1.2.1 As a scatterplot

1.2.2 On a structured grid

2. Converting Baltic+ SEAL NetCDF4 files

2.1 Create shapefiles

2.2 Create rasters

http://www.balticseal.eu/

1. Plotting Baltic+ SEAL products
1.1 How to plot a Baltic+ SEAL along-track product?

This code is a sample plot for users to plot Baltic+ SEAL along-track

altimetry sea level measurements

These codes were produced using Python 3 (Version 3.8); The following packages have to be

installed on your python: numpy, scipy, netCDF4, matplotlib and cartopy. You can install the

packages using pip (for example "pip install numpy") or conda (for example "conda

install numpy").

Note: Cartopy installation may be a bit complex as it has a lot of required dependencies. Using pre-built binaries

can be a solution. They can be found at a variety of sources. Christoph Gohlke maintains unofficial Windows

binaries (https://www.lfd.uci.edu/~gohlke/pythonlibs/). The correct version of the package of interest (ex: cp38

and win_amd64 is for Python 3.8 (64bits)) can be downloaded and installed by using “pip install” followed

by the path of the .whl file which has just been downloaded (pip install C:/some-dir/some-file.whl).

https://www.lfd.uci.edu/~gohlke/pythonlibs/

Importing the needed packages:

import netCDF4

import numpy as np

import cartopy as cart

from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

import matplotlib.pyplot as plt

import cartopy.crs as ccrs

from scipy.interpolate import griddata

Setting the inputs:

directory='C:/some-dir/' #The user should change to the .nc files' directory

filename='file.nc' #The user should change to the right file

S = netCDF4.Dataset(directory+filename)

lon = S.variables['lon'][:]

lat = S.variables['lat'][:]

ssh = S.variables['ssh'][:]

min_lat=53.0

max_lat=66.0

min_lon=9.0

max_lon=31.0

Displaying the along-track:

fig = plt.plot()

plt.rcParams.update({'font.size': 15})

plt.plot

plt.rcParams["figure.figsize"] = (50,10) #Increase figure size

ax = plt.axes(projection=ccrs.Miller())

img=plt.scatter(lon, lat,

 c=ssh, s=20,

 cmap='cool', alpha=1,transform=ccrs.PlateCarree())

ax.coastlines(resolution='10m', color='black', linewidth=1)

ax.set_xticks(np.arange(min_lon,max_lon,2), crs=ccrs.PlateCarree())

ax.set_yticks(np.arange(min_lat,max_lat,1), crs=ccrs.PlateCarree())

lon_formatter = cart.mpl.ticker.LongitudeFormatter(number_format='.1f',

 degree_symbol='',

 dateline_direction_label=True)

lat_formatter = cart.mpl.ticker.LatitudeFormatter(number_format='.1f',

 degree_symbol='')

ax.xaxis.set_major_formatter(lon_formatter)

ax.yaxis.set_major_formatter(lat_formatter)

plt.colorbar(img,label=r'SSH (m)')

plt.clim(15, 40)

plt.show() #A window will show up, allowing the user to see and download the plot

Figure 1: Output of the python code: Baltic SEAL along-track data (jason1_em_hf_262_0213.nc)

Figure 2: Output of the python code: Zoom on Treå Møllebugt (Denmark)

1.2 How to plot a Baltic+ SEAL gridded product?

This code is a sample plot for users to plot a grid of Baltic SEAL

It is important to note that Baltic SEAL is distributed using unstructured grids. Therefore, the

points of the original grid shall be displayed in a “scatter plot” (see the 1.2.1 python code).

Since several ocean data are distributed onto structured grids, it might be useful to interpolate

a Baltic SEAL product on such a grid. The 1.2.2 code provides an example by defining a grid

with a 1/10th-of-degree spacing in latitude and longitude.

These codes were produced using Python 3 (Version 3.8); The following packages have to be

installed on your python: numpy, scipy, netCDF4, matplotlib and cartopy. You can install the

packages using pip (for example "pip install numpy") or conda (for example "conda

install numpy"). Note that in order to mask out points on land in the second code, the

"global-land-mask" library is used and also has to be installed.

Note: Cartopy installation may be a bit complex as it has a lot of required dependencies. Using pre-built binaries

can be a solution. They can be found at a variety of sources. Christoph Gohlke maintains unofficial Windows

binaries (https://www.lfd.uci.edu/~gohlke/pythonlibs/). The correct version of the package of interest (ex: cp38

and win_amd64 is for Python 3.8 (64bits)) can be downloaded and installed by using “pip install” followed

by the path of the .whl file which has just been downloaded (pip install C:/some-dir/some-file.whl).

https://www.lfd.uci.edu/~gohlke/pythonlibs/

1.2.2 Plot an unstructured grid of Baltic SEAL
Importing the needed packages:

import netCDF4

import numpy as np

import cartopy as cart

from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

import matplotlib.pyplot as plt

import cartopy.crs as ccrs

from scipy.interpolate import griddata

Setting the inputs:

directory='C:/some-dir/' #The user should change the path to the .nc files' directory

filename='2002_06.nc' #The user should change to the right file

S = netCDF4.Dataset(directory+filename)

lon = S.variables['lon'][:]

lat = S.variables['lat'][:]

ssh = S.variables['ssh'][:]

min_lat=53.0

max_lat=66.0

min_lon=9.0

max_lon=31.0

Displaying the unstructured grid in a scatterplot:

fig = plt.plot()

plt.rcParams.update({'font.size': 15})

plt.plot

plt.rcParams["figure.figsize"] = (50,10) #Increase figure size

ax = plt.axes(projection=ccrs.Miller())

img=plt.scatter(lon, lat,

 c=ssh, s=20,

 cmap='cool', alpha=1,transform=ccrs.PlateCarree())

ax.coastlines(resolution='10m', color='black', linewidth=1)

ax.set_xticks(np.arange(min_lon,max_lon,2), crs=ccrs.PlateCarree())

ax.set_yticks(np.arange(min_lat,max_lat,1), crs=ccrs.PlateCarree())

lon_formatter = cart.mpl.ticker.LongitudeFormatter(number_format='.1f',

 degree_symbol='',

 dateline_direction_label=True)

lat_formatter = cart.mpl.ticker.LatitudeFormatter(number_format='.1f',

 degree_symbol='')

ax.xaxis.set_major_formatter(lon_formatter)

ax.yaxis.set_major_formatter(lat_formatter)

plt.colorbar(img,label=r'SSH (m)')

plt.clim(15, 40)

plt.show() #A window will show up, allowing the user to see and download the plot

Figure 3: Output of the first python code: Baltic SEAL unstructured grid displayed in a scatter plot

Figure 4: Output of the first python code: Zoom on the Gulf of Riga

1.2.3 Plot a structured grid of Baltic SEAL

Importing the needed packages:

import netCDF4

import numpy as np

import cartopy as cart

from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

import matplotlib.pyplot as plt

import cartopy.crs as ccrs

from scipy.interpolate import griddata

from global_land_mask import globe

Setting the inputs:

directory='C:/some-dir/' #The user should change the path to the .nc files' directory

filename='2002_06.nc' #The user should change to the right file

S = netCDF4.Dataset(directory+filename)

lon = S.variables['lon'][:]

lat = S.variables['lat'][:]

ssh = S.variables['ssh'][:]

min_lat=53.0

max_lat=66.0

min_lon=9.0

max_lon=31.0

grid_size=0.1 #The user can change the grid size to the desired one

grid_x, grid_y = np.mgrid[max_lat:min_lat:-grid_size,min_lon:max_lon:grid_size]

points=np.column_stack((lon,lat))

grid_z0 = griddata(points, ssh, (grid_y, grid_x), method='linear')

Displaying an interpolated Baltic SEAL product onto a structured grid:

fig = plt.plot()

plt.rcParams.update({'font.size': 15})

plt.plot

plt.rcParams["figure.figsize"] = (50,10) #Increase figure size

ax = plt.axes(projection=ccrs.Miller())

for i in np.arange(0,np.shape(grid_y)[0]) :

 for j in np.arange(0,np.shape(grid_y)[1]) :

 if globe.is_land(grid_x[i,j],grid_y[i,j]) :

 grid_z0[i,j] = np.nan

img=plt.pcolormesh(grid_y,grid_x,grid_z0,

 cmap='cool', alpha=1,transform=ccrs.PlateCarree())

ax.coastlines(resolution='10m', color='black', linewidth=1)

ax.set_xticks(np.arange(min_lon,max_lon,2), crs=ccrs.PlateCarree())

ax.set_yticks(np.arange(min_lat,max_lat,1), crs=ccrs.PlateCarree())

lon_formatter = cart.mpl.ticker.LongitudeFormatter(number_format='.1f',

 degree_symbol='',

 dateline_direction_label=True)

lat_formatter = cart.mpl.ticker.LatitudeFormatter(number_format='.1f',

 degree_symbol='')

ax.xaxis.set_major_formatter(lon_formatter)

ax.yaxis.set_major_formatter(lat_formatter)

plt.colorbar(img,label=r'SSH (m)')

plt.show()#A window will show up, allowing the user to see and download the plot

Figure 5: Output of the second python code: interpolated Baltic SEAL product onto a structured grid

 Figure 6: Output of the second python code: Zoom on the Gulf of Riga

3. Converting Baltic+ SEAL NetCDF4 files
3.1 How to get a Baltic+ SEAL shapefile?

This code is a sample plot for users to obtain a shapefile from along-

track or unstructured grids NetCDF4 files

These codes were produced using Python 3 (Version 3.8); The following packages have to be

installed on your python: numpy, os, netCDF4, gdal, csv, and osgeo. You can install the

packages using pip (for example "pip install numpy") or conda (for example "conda

install numpy").

Importing the needed packages:

import os

import netCDF4

import gdal

import numpy as np

import csv

from osgeo import osr

from osgeo import ogr

Setting the inputs:

directory='C:/some-dir/' #the user should change the path to the .nc files' directory

filename='jason1_em_hf_262_0014.nc' #the user should change to the right file

output_directory= C:/some-dir/' #the user should change the path to the output

directory

S = netCDF4.Dataset(directory+filename)

lon = S.variables['lon'][:]

lat = S.variables['lat'][:]

ssh = S.variables['ssh'][:]

Creation of the dictionary:

to_be_written = {}

for i in range (len(lat)):

 key = i

 if np.isnan(ssh[i]):

 to_be_written[key] =[lat[i], lon[i], 99999.999999999999999]

 else:

 to_be_written[key] =[lat[i], lon[i], ssh[i]]

print ("Dictionary written")

Dictionary written in a csv file:

csv_file = open((output_directory+filename[0:-3])+ ".csv", "w")

headers =["ID", "ssh", "lat", "lon"]

writer = csv.DictWriter(csv_file, fieldnames= headers)

writer.writeheader()

for key, value in to_be_written.items():

 writer.writerow({'ID' : key, 'ssh': value [2], "lat": value[0], "lon":

value[1]})

csv_file.close()

print ("CSV file created")

Create shapefile

csvfile = (output_directory + filename[0:-3]) + ".csv"

shpfile = (output_directory + filename[0:-3]) + ".shp"

spatialReference = osgeo.osr.SpatialReference()

spatialReference.ImportFromEPSG(int(4326)) #the user should change to the right EPSG

S = netCDF4.Dataset(directory+filename)

driver = osgeo.ogr.GetDriverByName('ESRI Shapefile')

shapeData = driver.CreateDataSource(shpfile)

layer = shapeData.CreateLayer('layer', spatialReference, osgeo.ogr.wkbPoint)

layer_defn = layer.GetLayerDefn()

index = 0

with open(csvfile, 'r') as csvfile:

 readerDict = csv.DictReader(csvfile, delimiter=',')

 for field in readerDict.fieldnames:

 new_field = ogr.FieldDefn(field, ogr.OFTString)

 layer.CreateField(new_field)

 for row in readerDict:

 point = osgeo.ogr.Geometry(osgeo.ogr.wkbPoint)

 point.AddPoint(float(row['lon']), float(row['lat']))

 feature = osgeo.ogr.Feature(layer_defn)

 feature.SetGeometry(point)

 feature.SetFID(index)

 for field in readerDict.fieldnames:

 i = feature.GetFieldIndex(field)

 feature.SetField(i, row[field])

 layer.CreateFeature(feature)

 index += 1

shapeData.Destroy()

print ("SHP file created")

3.2 How to get a Baltic+ SEAL raster?

This code is a sample plot for users to obtain a raster from

unstructured grids NetCDF4 files

These codes were produced using Python 3 (Version 3.8); The following packages have to be

installed on your python: numpy, netCDF4, gdal, scipy.interpolate, global_land_mask and

osgeo. You can install the packages using pip (for example "pip install numpy") or conda

(for example "conda install numpy").

Importing the needed packages:

import netCDF4

import numpy as np

import gdal

from scipy.interpolate import griddata

from global_land_mask import globe

from osgeo import osr

from osgeo import ogr

Setting the inputs:

directory='C:/some-dir/'#the user should change the path to the .nc files' directory

filename='YYYY_MM.nc' #the user should change to the right file

S = netCDF4.Dataset(directory+filename)

lon = S.variables['lon'][:]

lat = S.variables['lat'][:]

ssh = S.variables['ssh'][:]

min_lat=53.0

max_lat=66.0

min_lon=9.0

max_lon=31.0

Creating the array:

grid_size=0.1 #the user can change the size of the pixel

grid_y, grid_x = np.mgrid[max_lat:min_lat:-grid_size,min_lon:max_lon:grid_size]

points=np.column_stack((lon,lat))

grid_z0 = griddata(points, ssh, (grid_x, grid_y), method='linear')

print ("The array is created")

Masking the land:

for i in np.arange(0,np.shape(grid_x)[0]) :

 for j in np.arange(0,np.shape(grid_x)[1]) :

 if globe.is_land(grid_y[i,j],grid_x[i,j]) :

 grid_z0[i,j] = np.nan

print("Land is masked")

Creating the raster:

rasterName = directory + filename[0:- 3]+ ".tif"

ncols, nrows = np.shape(grid_z0)

geotransform=(min_lon,grid_size,0,min_lat,0,grid_size)

driver = gdal.GetDriverByName('GTiff')

outputRaster= driver.Create(rasterName,nrows,ncols,1,gdal.GDT_Float64)

outputRaster.SetGeoTransform(geotransform)

grid_z0 = np.flipud(grid_z0)

outband = outputRaster.GetRasterBand(1)

outband.WriteArray(grid_z0)

srs = osr.SpatialReference()

srs.ImportFromEPSG(4326)

outputRaster.SetProjection(srs.ExportToWkt())

outputRaster.FlushCache()

outputRaster = None

print("The raster file is created")

